Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
MMWR Morb Mortal Wkly Rep ; 70(35): 1195-1200, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1412223

ABSTRACT

To prevent transmission of SARS-CoV-2, the virus that causes COVID-19, colleges and universities have implemented multiple strategies including testing, isolation, quarantine, contact tracing, masking, and vaccination. In April 2021, the Chicago Department of Public Health (CDPH) was notified of a large cluster of students with COVID-19 at an urban university after spring break. A total of 158 cases of COVID-19 were diagnosed among undergraduate students during March 15-May 3, 2021; the majority (114; 72.2%) lived in on-campus dormitories. CDPH evaluated the role of travel and social connections, as well as the potential impact of SARS-CoV-2 variants, on transmission. Among 140 infected students who were interviewed, 89 (63.6%) reported recent travel outside Chicago during spring break, and 57 (40.7%) reported indoor social exposures. At the time of the outbreak, undergraduate-aged persons were largely ineligible for vaccination in Chicago; only three of the students with COVID-19 (1.9%) were fully vaccinated. Whole genome sequencing (WGS) of 104 specimens revealed multiple distinct SARS-CoV-2 lineages, suggesting several nearly simultaneous introductions. Most specimens (66; 63.5%) were B.1.1.222, a lineage not widely detected in Chicago before or after this outbreak. These results demonstrate the potential for COVID-19 outbreaks on university campuses after widespread student travel during breaks, at the beginning of new school terms, and when students participate in indoor social gatherings. To prevent SARS-CoV-2 transmission, colleges and universities should encourage COVID-19 vaccination; discourage unvaccinated students from travel, including during university breaks; implement serial COVID-19 screening among unvaccinated persons after university breaks; encourage masking; and implement universal serial testing for students based on community transmission levels.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , SARS-CoV-2/isolation & purification , Students/statistics & numerical data , Universities , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , COVID-19 Vaccines/administration & dosage , Chicago/epidemiology , Female , Humans , Male , Social Interaction , Travel-Related Illness , Young Adult
2.
MMWR Morb Mortal Wkly Rep ; 69(15): 446-450, 2020 Apr 17.
Article in English | MEDLINE | ID: covidwho-1389842

ABSTRACT

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), has spread rapidly around the world since it was first recognized in late 2019. Most early reports of person-to-person SARS-CoV-2 transmission have been among household contacts, where the secondary attack rate has been estimated to exceed 10% (1), in health care facilities (2), and in congregate settings (3). However, widespread community transmission, as is currently being observed in the United States, requires more expansive transmission events between nonhousehold contacts. In February and March 2020, the Chicago Department of Public Health (CDPH) investigated a large, multifamily cluster of COVID-19. Patients with confirmed COVID-19 and their close contacts were interviewed to better understand nonhousehold, community transmission of SARS-CoV-2. This report describes the cluster of 16 cases of confirmed or probable COVID-19, including three deaths, likely resulting from transmission of SARS-CoV-2 at two family gatherings (a funeral and a birthday party). These data support current CDC social distancing recommendations intended to reduce SARS-CoV-2 transmission. U.S residents should follow stay-at-home orders when required by state or local authorities.


Subject(s)
Betacoronavirus/isolation & purification , Community-Acquired Infections/transmission , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Chicago/epidemiology , Child , Child, Preschool , Cluster Analysis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/mortality , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Family , Humans , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , SARS-CoV-2 , Young Adult
3.
MMWR Morb Mortal Wkly Rep ; 69(43): 1591-1594, 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-1380140

ABSTRACT

Data on transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), among college athletes are limited. In August 2020, the Chicago Department of Public Health (CDPH) was notified of a cluster of COVID-19 cases among a university's men's and women's soccer teams. CDPH initiated an investigation, interviewed members of both teams, and collated laboratory data to understand transmission of SARS-CoV-2 within the teams. Numerous social gatherings with limited mask use or social distancing preceded the outbreak. Transmission resulted in 17 laboratory-confirmed COVID-19 cases across both teams (n = 45), likely from a single source introduction of SARS-CoV-2 (based on whole genome sequencing) and subsequent transmission during multiple gatherings. Colleges and universities are at risk for COVID-19 outbreaks because of shared housing and social gatherings where recommended prevention guidance is not followed. Improved strategies to promote mask use and social distancing among college-aged adults need to be implemented, as well as periodic repeat testing to identify asymptomatic infections and prevent outbreaks among groups at increased risk for infection because of frequent exposure to close contacts in congregate settings on and off campus.


Subject(s)
Athletes/statistics & numerical data , COVID-19/epidemiology , Disease Outbreaks , Soccer , Students/statistics & numerical data , Universities , Adolescent , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , Chicago/epidemiology , Contact Tracing , Disease Outbreaks/prevention & control , Female , Humans , Male , Masks/statistics & numerical data , Physical Distancing , Quarantine , SARS-CoV-2/isolation & purification , Young Adult
5.
J Public Health Manag Pract ; 27(3): 229-232, 2021.
Article in English | MEDLINE | ID: covidwho-1005742

ABSTRACT

Reopening in-person education in public schools during the coronavirus 2019 (COVID-19) pandemic requires careful risk-benefit analysis, with no current established metrics. Equity concerns in urban public schools such as decreased enrollment among largely Black and Latinx prekindergarten and special needs public school students already disproportionately impacted by the pandemic itself have added urgency to Chicago Department of Public Health's analysis of COVID-19 transmission. Close tracking within a large school system revealed a lower attack rate for students and staff participating in in-person learning than for the community overall. By combining local data from a large urban private school system with national and international data on maintaining in-person learning during COVID-19 surges, Chicago believes in-person public education poses a low risk of transmission when the operational burden imposed by the second wave has subsided.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/statistics & numerical data , Education/standards , Guidelines as Topic , Schools/statistics & numerical data , Schools/standards , Students/statistics & numerical data , Adolescent , Chicago/epidemiology , Child , Child, Preschool , Cities/epidemiology , Cities/statistics & numerical data , Female , Humans , Male , Pandemics , Risk Assessment/methods , Risk Assessment/standards
6.
Open Forum Infect Dis ; 7(11): ofaa477, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-954375

ABSTRACT

BACKGROUND: People experiencing homelessness are at increased risk of coronavirus disease 2019 (COVID-19), but little is known about specific risk factors for infection within homeless shelters. METHODS: We performed widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction testing and collected risk factor information at all homeless shelters in Chicago with at least 1 reported case of COVID-19 (n = 21). Multivariable, mixed-effects log-binomial models were built to estimate adjusted prevalence ratios (aPRs) for SARS-CoV-2 infection for both individual- and facility-level risk factors. RESULTS: During March 1 to May 1, 2020, 1717 shelter residents and staff were tested for SARS-CoV-2; 472 (27%) persons tested positive. Prevalence of infection was higher for residents (431 of 1435, 30%) than for staff (41 of 282, 15%) (prevalence ratio = 2.52; 95% confidence interval [CI], 1.78-3.58). The majority of residents with SARS-CoV-2 infection (293 of 406 with available information about symptoms, 72%) reported no symptoms at the time of specimen collection or within the following 2 weeks. Among residents, sharing a room with a large number of people was associated with increased likelihood of infection (aPR for sharing with >20 people compared with single rooms = 1.76; 95% CI, 1.11-2.80), and current smoking was associated with reduced likelihood of infection (aPR = 0.71; 95% CI, 0.60-0.85). At the facility level, a higher proportion of residents leaving and returning each day was associated with increased prevalence (aPR = 1.08; 95% CI, 1.01-1.16), whereas an increase in the number of private bathrooms was associated with reduced prevalence (aPR for 1 additional private bathroom per 100 people = 0.92; 95% CI, 0.87-0.98). CONCLUSIONS: We identified a high prevalence of SARS-CoV-2 infections in homeless shelters. Reducing the number of residents sharing dormitories might reduce the likelihood of SARS-CoV-2 infection. When community transmission is high, limiting movement of persons experiencing homelessness into and out of shelters might also be beneficial.

7.
J Pediatric Infect Dis Soc ; 9(5): 519-522, 2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-919290

ABSTRACT

BACKGROUND: To date, no report on coronavirus disease 2019 (COVID-19) pediatric patients in a large urban center with data on underlying comorbidities and coinfection for hospitalized cases has been published. METHODS: This was a case series of Chicago COVID-19 patients aged 0-17 years reported to the Chicago Department of Public Health (CDPH) from March 5 to April 8, 2020. Enhanced case investigation was performed. χ 2 and Wilcoxon 2-sample tests were used to compare characteristics among hospitalized and nonhospitalized cases. RESULTS: During March 5-April 8, 2020, 6369 laboratory-confirmed cases of COVID-19 were reported to CDPH; 64 (1.0%) were among children aged 0-17 years. Ten patients (16%) were hospitalized, and 7 (70%) required intensive care (median length of hospitalization, 4 days [range, 1-14 days]). Reported fever and dyspnea were significantly higher in hospitalized patients than in nonhospitalized patients (9/10 vs 28/54, P = .04 and 7/10 vs 10/54, P = .002, respectively). Hospitalized patients were significantly younger than nonhospitalized patients (median, 3.5 years vs 12 years; P = .03) and all either had an underlying comorbidity or coinfection. Among the 34 unique households with multiple laboratory-confirmed infections, the median number of laboratory-confirmed infections was 2 (range, 2-5), and 31 (91%) households had at least 1 COVID-19-infected adult. For 15 households with available data to assess transmission, 11 (73%) were adult-to-child, 2 (13%) child-to-child, and 2 (13%) child-to-adult. CONCLUSIONS: Enhanced case investigation of hospitalized patients revealed that underlying comorbidities and coinfection might have contributed to severe disease. Given frequency of household transmission, healthcare providers should consider alternative dispositional planning for affected families of children living with comorbidities.


Subject(s)
Coronavirus Infections/complications , Patient Acuity , Pneumonia, Viral/complications , Adolescent , Age Factors , Betacoronavirus , COVID-19 , Chicago , Child , Child, Preschool , Comorbidity , Cough/etiology , Female , Fever/etiology , Hospitalization/statistics & numerical data , Humans , Infant , Male , Pandemics , SARS-CoV-2
8.
Public Health Rep ; 136(1): 88-96, 2021.
Article in English | MEDLINE | ID: covidwho-894953

ABSTRACT

OBJECTIVES: Widespread global transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), continues. Many questions remain about asymptomatic or atypical infections and transmission dynamics. We used comprehensive contact tracing of the first 2 confirmed patients in Illinois with COVID-19 and serologic SARS-CoV-2 antibody testing to determine whether contacts had evidence of undetected COVID-19. METHODS: Contacts were eligible for serologic follow-up if previously tested for COVID-19 during an initial investigation or had greater-risk exposures. Contacts completed a standardized questionnaire during the initial investigation. We classified exposure risk as high, medium, or low based on interactions with 2 index patients and use of personal protective equipment (PPE). Serologic testing used a SARS-CoV-2 spike enzyme-linked immunosorbent assay on serum specimens collected from participants approximately 6 weeks after initial exposure to either index patient. The 2 index patients provided serum specimens throughout their illness. We collected data on demographic, exposure, and epidemiologic characteristics. RESULTS: Of 347 contacts, 110 were eligible for serologic follow-up; 59 (17% of all contacts) enrolled. Of these, 53 (90%) were health care personnel and 6 (10%) were community contacts. Seventeen (29%) reported high-risk exposures, 15 (25%) medium-risk, and 27 (46%) low-risk. No participant had evidence of SARS-CoV-2 antibodies. The 2 index patients had antibodies detected at dilutions >1:6400 within 4 weeks after symptom onset. CONCLUSIONS: In serologic follow-up of the first 2 known patients in Illinois with COVID-19, we found no secondary transmission among tested contacts. Lack of seroconversion among these contacts adds to our understanding of conditions (ie, use of PPE) under which SARS-CoV-2 infections might not result in transmission and demonstrates that SARS-CoV-2 antibody testing is a useful tool to verify epidemiologic findings.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Contact Tracing/statistics & numerical data , Health Personnel/statistics & numerical data , Occupational Exposure/statistics & numerical data , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Illinois/epidemiology , Male , Pandemics , Personal Protective Equipment , Risk Assessment , SARS-CoV-2
9.
Lancet ; 395(10230): 1137-1144, 2020 04 04.
Article in English | MEDLINE | ID: covidwho-8381

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in China in December, 2019. In January, 2020, state, local, and federal public health agencies investigated the first case of COVID-19 in Illinois, USA. METHODS: Patients with confirmed COVID-19 were defined as those with a positive SARS-CoV-2 test. Contacts were people with exposure to a patient with COVID-19 on or after the patient's symptom onset date. Contacts underwent active symptom monitoring for 14 days following their last exposure. Contacts who developed fever, cough, or shortness of breath became persons under investigation and were tested for SARS-CoV-2. A convenience sample of 32 asymptomatic health-care personnel contacts were also tested. FINDINGS: Patient 1-a woman in her 60s-returned from China in mid-January, 2020. One week later, she was hospitalised with pneumonia and tested positive for SARS-CoV-2. Her husband (Patient 2) did not travel but had frequent close contact with his wife. He was admitted 8 days later and tested positive for SARS-CoV-2. Overall, 372 contacts of both cases were identified; 347 underwent active symptom monitoring, including 152 community contacts and 195 health-care personnel. Of monitored contacts, 43 became persons under investigation, in addition to Patient 2. These 43 persons under investigation and all 32 asymptomatic health-care personnel tested negative for SARS-CoV-2. INTERPRETATION: Person-to-person transmission of SARS-CoV-2 occurred between two people with prolonged, unprotected exposure while Patient 1 was symptomatic. Despite active symptom monitoring and testing of symptomatic and some asymptomatic contacts, no further transmission was detected. FUNDING: None.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , COVID-19 , China , Contact Tracing , Female , Humans , Illinois , Middle Aged , Pandemics , SARS-CoV-2 , Travel
SELECTION OF CITATIONS
SEARCH DETAIL